3.612 \(\int \frac {(a+b \cos (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=375 \[ \frac {b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {\sqrt {a+b} (2 a+b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}-\frac {b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {3 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d} \]

[Out]

b*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)-(a-b)*b*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+
b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(
a-b))^(1/2)/a/d+(2*a+b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b)
)^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d-3*a*cot(d*x+c)*EllipticPi
((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c
))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.64, antiderivative size = 375, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2821, 3053, 2809, 2998, 2816, 2994} \[ \frac {b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {\sqrt {a+b} (2 a+b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}-\frac {b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {3 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]

[Out]

-(((a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]
])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d)) + (
Sqrt[a + b]*(2*a + b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])]
, -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (3*a*Sqrt
[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])],
-((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d + (b*Sqrt[a +
 b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2821

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[1/(d*(m + n)),
 Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*(m + n) + b*d*(b*c*(m - 1) + a*d*n
) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c - b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))*S
in[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3053

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^{3/2}}{\sqrt {\cos (c+d x)}} \, dx &=\frac {b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\int \frac {-\frac {a b}{2}+a^2 \cos (c+d x)+\frac {3}{2} a b \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{2} (3 a b) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx+\int \frac {-\frac {a b}{2}+a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {3 a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {1}{2} (a b) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{2} (a (2 a+b)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {(a-b) b \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}+\frac {\sqrt {a+b} (2 a+b) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {3 a \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 7.57, size = 339, normalized size = 0.90 \[ -\frac {\sqrt {\cos (c+d x)} \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (b \cos (c+d x) \tan \left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) (a+b \cos (c+d x))+4 a (a-2 b) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )+2 b (a+b) \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )+12 a b \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{d \left (\tan ^4\left (\frac {1}{2} (c+d x)\right )-1\right ) \sqrt {a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)/Sqrt[Cos[c + d*x]],x]

[Out]

-((Sqrt[Cos[c + d*x]]*Sec[(c + d*x)/2]^2*(2*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 4*a*(a - 2*b)*Sq
rt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[T
an[(c + d*x)/2]], (-a + b)/(a + b)] + 12*a*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + b*Cos[c + d*x]*(a +
b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(d*Sqrt[a + b*Cos[c + d*x]]*(-1 + Tan[(c + d*x)/2]^4)))

________________________________________________________________________________________

fricas [F]  time = 1.29, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.27, size = 1003, normalized size = 2.67 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x)

[Out]

-1/d/(a+b*cos(d*x+c))^(1/2)*(2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c
)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a^2-4*cos(d*x+c)*sin(d*x+c)*
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(
d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+EllipticE((-1+cos(d*x+
c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*b^2+6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a*b+2*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)
/(a+b))^(1/2))*a^2*sin(d*x+c)-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*s
in(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*
x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a*b*sin(d*x+c)+cos(d*
x+c)^3*b^2+cos(d*x+c)^2*a*b-cos(d*x+c)^2*b^2-a*b*cos(d*x+c))/cos(d*x+c)^(1/2)/sin(d*x+c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((a + b*cos(c + d*x))**(3/2)/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________